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Abstract

This article deals with the solution of conduction–radiation heat transfer problem involving variable thermal conductivity and var-
iable refractive index. The discrete transfer method has been used for the determination of radiative information for the energy equation
that has been solved using the lattice Boltzmann method. Radiatively, medium is absorbing, emitting and scattering. To validate the
formulation, transient conduction and radiation heat transfer in a planar participating medium has been considered. For constant ther-
mal conductivity and constant and variable refractive indices, results have been compared with those available in the literature. Effects of
conduction–radiation parameter and scattering albedo on temperature have been studied for variable thermal conductivity and constant
and/or variable refractive index. Lattice Boltzmann method and the discrete transfer method have been found to successfully deal with
the complexities introduced due to variable thermal conductivity and variable refractive index.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Many heat transfer problems involve consideration of
conduction, convection and/or radiation. In such cases,
treatment of one mode without considering effects of the
other often lead to erroneous results. Therefore, in com-
bined mode problems, it is necessary to consider the rela-
tive importance of one mode over the other. However,
with such considerations, mathematical complexity
increases.

The cases of constant thermal conductivity and unity
refractive index in combined conduction–radiation heat
transfer problems have been studied in detail by many
investigators [1,2]. Because of the mathematical complexi-
ties, a limited literature is available that individually deal
with the effects of variable thermal conductivity [3,4] and
constant and/or variable refractive index [5–9]. However,
no work has been reported so far that deals with the com-
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bined effects of the two in a combined mode conduction–
radiation heat transfer problem in a participating medium.
The case of variable thermal conductivity and variable
refractive index finds application in the thermal analysis
of graded index medium. The present work is, therefore,
aimed at the analysis of conduction and radiation heat
transfer in a participating medium considering the effect
of variable thermal conductivity and constant and/or vari-
able refractive index.

The usage of the lattice Boltzmann method (LBM) to
solve energy equations of heat transfer problems is gaining
momentum [4,10–18] and its recent application to problems
involving conduction, convection and/or radiation heat
transfer has been encouraging [4,15–18]. Quite recently
Gupta et al. [4] used the concept of a variable relaxation
time in the LBM and solved the energy equation of a tem-
perature dependent transient conduction and radiation
heat transfer in a planar medium. Refractive index was
considered unity in their study. The discrete transfer
method (DTM) [19] is one of the popular methods to com-
pute the radiative information required for the energy
equation of a combined radiation, conduction and/or
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Nomenclature

cp specific heat
ei propagation speed in the direction i in the lattice
~ei propagation velocity in the direction i in the lat-

tice
fi particle distribution function in the i direction
f ð0Þi equilibrium particle distribution function in the

i direction
G incident radiation
I intensity
k thermal conductivity
Md total number of discrete divisions of polar angle
m index for direction
N conduction–radiation parameter
n refractive index
p anisotropy factor
qR radiative heat flux
S source term
s geometric distance
T temperature
t time
X thickness of the medium
x coordinate direction

Greek symbols

a thermal diffusivity
b extinction coefficient
c coefficient for thermal conductivity variation
c0 variable thermal conductivity parameter
e emissivity
h non-dimensional temperature
n non-dimensional time
q density
r Stefan–Boltzmann constant
rs scattering coefficient
W non-dimensional heat flux
s relaxation time
x scattering albedo

Subscripts

av average
b boundary
d,u downstream, upstream
0 reference
E,W east, west
R radiative
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convection mode problem. Its application to a pure radia-
tive transfer problem dealing with variable refractive index
participating medium has been recently extended by
Krishna and Mishra [9].

One another objective of the present article is, therefore,
also to extend the concepts of the variable relaxation time
in the LBM proposed by Gupta et al. [4] and that of the
variable refractive index in the DTM by Krishna and Mis-
hra [9] to analyze the combined effects of the two in a con-
duction–radiation heat transfer problem.

In the following pages, we first provide a general formula-
tion of the DTM and the LBM to analyze conduction–radi-
ation heat transfer with variable thermal conductivity and
variable refractive index. Next, to validate the LBM-DTM
formulations, some representative results are compared with
those available in the literature [5,6] for constant thermal
conductivity and constant non-unity and/or variable refrac-
tive index. Results for variable thermal conductivity and con-
stant and/or variable refractive index are presented next.
These results are presented for the effects of the conduc-
tion–radiation parameter and scattering albedo on tempera-
ture distributions. Conclusions are made at the end.
2. Formulation

Consider a 1-D planar conducting–radiating medium
(Fig. 1) with variable thermal conductivity k and variable
refractive index n. Other thermophysical properties such
as density q, specific heat cp, and optical properties such
as extinction coefficient b and scattering albedo x are
assumed constant. The system is initially at temperature
TE and for time t > 0, its west boundary is raised to temper-
ature TW. The variation of thermal conductivity with tem-
perature is taken as

k ¼ k0 þ c0ðT � T WÞ ð1Þ

where k0 is the reference thermal conductivity and c0 is
the coefficient of thermal conductivity variation. The
refractive index n of the medium assumes either a constant
non-unity value (n > 1) or varies linearly with distance
nx ¼ nW þ nE�nW

L

� �
x, where nW and nE are the refractive

indices on the west and the east faces of the medium,
respectively.

For the problem under consideration, the energy equa-
tion is given by

qcp
oT
ot
¼ � o

ox
�k

oT
ox

� �
� oqR

ox
ð2Þ

where qR is the radiative heat flux and oqR

ox for a medium
with a variable refractive index is given by [5]

oqR

ox
¼ ja 4pn2 rT 4

p
� G

� �
ð3Þ

where ja is the absorption coefficient and G is the incident
radiation.

To solve for G at any location x, information about the
intensity I distribution is required which for any direction s
is obtained from the following radiative transfer equation
[9].
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Fig. 1. One-dimensional planar geometry under consideration. Lattices of the LBM and the control volumes of the DTM are staggered.
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d

ds
I
n2

� �
þ b

I
n2
¼ S

n2
ð4Þ

where the source term S in terms of G and the net radiative
heat flux qR for a linear anisotropic phase function
(p = 1 + acosdcosd0) is given by

S ¼ ðjan2Þ rT 4

p
þ rs

4p
ðGþ a cos dqRÞ ð5Þ

where rs is the scattering coefficient, p is the scattering
phase function and d is the polar angle. Between the up-
stream point u and the downstream point d, if the optical
path-leg b � Ds is small enough, the source term S

n2 in Eq.
(4) can be assumed constant over the path-leg and Eq.
(4) after integration can be written in the recursive form as

Id

n2
d

¼ Iu

n2
u

expð�b� DsÞ þ Sav½1� expð�b� DsÞ� ð6Þ

where nu and nd are the refractive indices at the upstream
point and the downstream point, respectively and Sav is
the constant value of the source term over the optical
path-leg between the two points. In a planar medium, Sav

is taken as

Sav ¼
1

2

Sd

n2
d

þ Su

n2
u

� �
ð7Þ

In the application of the DTM to a variable refractive in-
dex participating medium, rays take curved trajectories
and for certain directions, internal reflections also occur.
Over these curved trajectories, Eq. (6) is used recursively.
Details of ray tracing procedure in the DTM have been gi-
ven in Krishna and Mishra [9].

For a planar medium, incident radiation G is given by
and in the DTM, it is numerically computed as [19]

G ¼ 2p
Z p

d¼0

IðdÞ sin ddd

� 4p
XMd

l¼1

IðdlÞ sin dl sin
Ddl

2

� �
ð8Þ

where Md is the number of discrete divisions considered
over the complete span of the polar angle d (0 6 d 6 p).
The net radiative heat flux qR in the DTM is numerically
computed as [19]
qR ¼ 2p
Z p

d
IðdÞ cos d sin ddd

� 2p
XMd

l¼1

IðdlÞ cos dl sin dl sin Ddl ð9Þ

In the DTM, intensities are traced from the boundaries. In
Eq. (6), for a given direction dl, if the upstream point lies on
the boundary, then its values have to be computed from the
radiative boundary condition. For a diffuse-gray boundary
with temperature Tb and emissivity eb, the boundary inten-
sity Ib is given by

Ib ¼ ðn2ebÞ
rT 4

b

p
þ ð1� ebÞ

p
2p
XMd=2

l¼1

IðdlÞ cos dl sin dl sin Ddl

ð10Þ

Once the radiative information oqR/ox is known from Eq.
(3), the next step is to introduce the effect of the variable
thermal conductivity in the energy equation (Eq. (2)).

Substituting for k from Eq. (1) into Eq. (2), we get

qcp
oT
ot
¼ ½k0 þ c0ðT � T WÞ�

o
2T

ox2
þ c0

oT
ox

� �2

� oqR

ox
ð11Þ

With non-dimensional temperature h, distance x*, conduc-
tion–radiation parameter N, radiative heat flux WR, time n
and variable thermal conductivity parameter c defined in
the following way:

h ¼ T
T W

; x� ¼ bx; N ¼ k0b

4rT 3
W

; WR ¼
qR

rT 4
W

;

n ¼ ab2t; c ¼ c0T WN
k0

ð12Þ

Eq. (11) becomes

oh
on
¼ 1þ cðh� 1Þ

N

� �
o

2h
ox�2
þ c

N
oh
ox�

� �2

� 1

4N
oWR

ox�
ð13Þ

The initial and the boundary conditions for the problem
under consideration are as follows:

Initial condition : hðx�; 0Þ ¼ hE

Boundary conditions : hð0; nÞ ¼ hW; hðX �; nÞ ¼ hE

ð14Þ
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Eq. (13) is a non-linear partial differential equation in
which apart from the non-linearity in the radiative term
oWR/ox*, the first two terms on the right-hand side are also
non-linear. For removing the non-linearity due to radia-
tive term, the radiative information is calculated from the
temperature values from the previous iteration. However,
non-linearity in other terms of the energy equation requires
separate treatment whose solution in the conventional
CFD methods is given in Talukdar and Mishra [3]. The
treatment of non-linearity in the LBM is different and the
same has been explained in Gupta et al. [4].

In the LBM, the discrete Boltzmann equation with Bha-
tanagar–Gross–Krook (BGK) approximation is given by
[11]

ofið~x; tÞ
ot

þ~ei � rfið~x; tÞ ¼ �
1

s
½fið~x; tÞ � f ð0Þi ð~x; tÞ� ð15Þ

where fi is the particle distribution function denoting the
number of particles at the lattice node~x and time t moving
in direction i with velocity~ei along the lattice link Dx = eiDt

connecting the neighbors, s is the relaxation time and f ð0Þi is
the equilibrium distribution function. For the 1-D planar
medium problem under consideration (Fig. 1), s for the
D1Q2 lattice is computed from [11]

s ¼ a

j~eij2
þ Dt

2
ð16Þ

where a is the thermal diffusivity. The two velocities e1 and
e2, and their corresponding weights w1 and w2 for the
D1Q2 lattice are given by

e1 ¼ Dx=Dt; e2 ¼ �Dx=Dt; w1 ¼ w2 ¼
1

2
ð17Þ

After discretization, Eq. (15) is written as

fið~xþ~eiDt; t þ DtÞ ¼ fið~x; tÞ �
Dt
s
½fið~x; tÞ � f ð0Þi ð~x; tÞ� ð18Þ

Eq. (18) is the LB equation with BGK approximation that
describes the evolution of the particle distribution function
fi.

In a problem involving conduction and radiation, tem-
perature is obtained after summing fi over all directions
[11], i.e.

T ð~x; tÞ ¼
X

i

fið~x; tÞ ð19Þ

To process Eq. (18), an equilibrium distribution function is
required. For the problem under consideration, this is gi-
ven by

f ð0Þi ð~x; tÞ ¼ wiT ð~x; tÞ ð20Þ

From Eqs. (19) and (20), we haveX
i

f ð0Þi ð~x; tÞ ¼
X

i

wiT ð~x; tÞ ¼ T ð~x; tÞ ¼
X

i

fið~x; tÞ ð21Þ

Eq. (18) provides the solution of a transient heat conduc-
tion problem in the LBM. To account for the radiation
term in the energy equation (Eq. (13)), in the LBM formu-
lation, Eq. (18) is modified to [15,16]

fið~xþ~eiDt; t þ DtÞ ¼ fið~x; tÞ �
Dt
s

fið~x; tÞ � f ð0Þi ð~x; tÞ
h i

� Dtwi

qcp

oqR

ox
ð22Þ

Eq. (22) is the equivalent form of the energy equation (Eq.
(11)) in the LBM formulation. To account for the temper-
ature dependent thermal conductivity (Eq. (1)), the expres-
sion for the relaxation time s in Eq. (16) becomes

s ¼ k=qcp

j~eij2
þ Dt

2
¼ k0 þ c0ðT � T WÞ

qcpj~eij2
þ Dt

2

¼ k0

qcpj~eij2
þ c0

qcpj~eij2
ðT � T WÞ þ

Dt
2

ð23Þ

With non-dimensional quantities as defined in Eqs. (12),
(22) in non-dimensional form is given by

f �i ð~x� þ~e�i Dn; nþ DnÞ

¼ f �i ð~x�; nÞ �
Dn
s�

f �i ð~x�; nÞ � f �ð0Þi ð~x�; nÞ
h i

� Dnwi

4N
oWR

ox�

ð24Þ

where f �i is the particle distribution function in non-dimen-
sional from and it is computed from the non-dimensional
temperature. In Eq. (24), oWR

ox� is given by

oWR

ox�
¼ 4ð1� xÞ n2h4 � G�

4p

� �
ð25Þ

where G� ¼ G
rT 4

W

p

� 	.
. Eq. (23) for the relaxation time

takes the following form

s� ¼ 1

Dx�=Dnð Þ2
þ c

Dx�=Dnð Þ2
ðh� hWÞ þ

Dn
2

ð26Þ

With radiative information known from any of the meth-
ods like the DTM, the DOM and the FVM, the procedure
to solve energy equation of a conduction–radiation prob-
lem using the LBM has been given in [15–18].

3. Results and discussion

To validate the LBM and the DTM formulations for the
treatment of variable thermal conductivity and variable
refractive index presented above, we consider a 1-D planar
medium of 10 cm thickness. Its west boundary temperature
TW > TE. The refractive index of the medium can either
have a non-unity (n > 1) constant value or a linear varia-
tion nx ¼ nW þ nE�nW

L

� �
x. The thermal conductivity has a

linear dependence on temperature with its variation as
given in Eq. (1). Thermal conductivity parameter c can take
positive, negative or zero values.

For grid-independent solution, the medium was divided
into 100 lattices/control volumes for constant refractive
index case and that for a variable refractive index case,
it was divided into 1000 lattices/control volumes. For
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ray-independent solution, 36 equally-spaced directions
were considered. In the following pages, results have been
presented for steady-state condition. However, the problem
was solved as a transient one. The steady-state condition
was assumed to have reached when temperature difference
between two consecutive time levels at each lattice center
did not exceed 1 � 10�6. In solving the energy equation,
non-dimensional time step Dn = 0.0001 was considered.

In Figs. 2 and 3, results of the present work have been
validated against those available in the literature [5,6].
Comparison of the non-dimensional temperature h results
for constant refractive index nW = nE = 1.5 and constant
thermal conductivity (c = 0.0) has been made in Fig. 2.
For absorbing-emitting x = 0.0 and extinction coefficient
b = 10.0, these comparisons have been given for the
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Fig. 2. Comparisons of non-dimensional temperature h variation with
distance x/X of the present work with that of Abdallah and Dez [5].
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Fig. 3. Comparisons of non-dimensional temperature h variation with
distance x/X of the present work with that of Xia et al. [6] for
N = 0.01306.
conduction–radiation parameter N = 0.1306 and 0.01306.
Comparisons of the present results for the two values
of N ¼ k0b

4rT 3
W

given in Fig. 2 are based on the dimen-

sional values of k0 and b taken from Abdallah and Dez
[5] where TE = 1000 K and TW = 1500 K. It is seen from
the Fig. 2 that the results of the present work match very
well with that of Abdallah and Dez [5] which are based
on the curved ray tracing approach for radiation and the
finite difference scheme for the energy equation.

In the case of a linearly varying refractive index
(nW = 1.2, nE = 1.8) medium with constant thermal con-
ductivity (c = 0.0), temperature results of the present work
have been compared with that of Xia et al. [6] in Fig. 3. This
comparison has been shown for b = 10.0, x = 0.0 and
N = 0.01306. Comparisons of the present results in Fig. 2
for N ¼ k0b

4rT 3
W

¼ 0:01306 is based on k0 = 0.1 Wm�1 K�1

and TW = 1500 K given in [6]. TE in Xia et al. [6] was taken
as 1000 K. It is seen from Fig. 3 that present results match
very well with that of [6].
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For constant thermal conductivity, having validated the
general formulations of the LBM and the DTM for non-
unity constant refractive index with Abdallah and Dez [5]
and for variable refractive index with Xia et al. [6], in the
following pages, we provide some results to show the effects
of variable thermal conductivity and constant and/or vari-
able refractive index. These results are shown for various
radiative parameters.

In Fig. 4a, effect of variable thermal conductivity with
c = � 0.5, 0.0 and 0.5 on h variation in the medium has
been shown for refractive nW = nE = 2.0. In Fig. 4b, effect
of refractive index n = nW = nE on h has been shown.
Results in Fig. 4a and b are for b = 10.0, x = 0.0 and
N = 0.2. It is seen from Fig. 4 that for a constant refractive
index n, variable thermal conductivity parameter c is hav-
ing significant effect on h, and for a given c, n is also having
a major effect on h.

It is seen from Fig. 4a that near the cold boundary, the
effect of c is more. Compared to c = � 0.5, at any location,
with respect to c = 0.0, temperature h difference and non-
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Fig. 5. Non-dimensional temperature h distribution with distance x/X (a)
effect of N for n = nW = nE and (b) effect of x for n = nW = nE.
linearity are more for c = 0.5. That is attributed to the fact
that for c = 0.5, thermal conductivity increases with
increases in temperature, and radiation being a high tem-
perature phenomenon, it becomes more prominent. From
Fig. 4b, it is observed that with increase in refractive index
n, h near the hot boundary decreases. Near the cold bound-
ary, an opposite trend is observed. h profile is more non-
linear for higher values of n. This trend is owing to the fact
that the refractive index n also contributes to the non-line-
arity. It appears as n2 term in the divergence of radiative
heat flux term (Eq. (25)) that is the radiation source term
in the energy equation (Eq. (22)).

In Fig. 5a and b, effects of the conduction–radiation
parameter N and scattering albedo x have been shown
on h. These effects have been shown for n = nW = nE = 2.0,
c = 0.5 and b = 10.0. For results in Fig. 5a, x = 0.0 and
effects have been studied for the conduction–radiation
parameter N = 0.2, 0.35 and 0.5. It is seen that initially
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effect of c on non-dimensional temperature h variation with distance x/X
and (b) effect of N on non-dimensional temperature h variation with
distance x/X.
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the temperature drops for all three values of N are similar.
However, for the radiation dominated case (N = 0.2)
towards the cold boundary, the temperature drop is sharp.
In Fig. 5b, for the case of N = 0.2, h results are presented
for x = 0.0, 0.5 and 0.75. The h profiles for all the three
cases are found to intersect at the mid-plane. For a lower
value of x, temperature change is more towards the
boundaries.

Effect of c on h distribution for the case of a linearly
varying refractive index nW = 1.2, nE = 1.8 has been shown
in Fig. 6a. In Fig. 6b, the effect of the conduction–radiation
parameter N has been shown.

Comparison of results in Figs. 4a and 6a shows that the
effect of c on h is more towards the cold (east) boundary.
The different values of n = nW = nE have no effect on h at
the mid-plane (Fig. 4b). However, effect increases away
from the mid-plane. Towards the hot (west) boundary, at
any location, h decreases with increase in the refractive
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Fig. 7. For the case of variable refractive index (a) non-dimensional
temperature h variation with distance x/X for nE = 1.8, nW = 1.2 and
nE = 1.5, nW = 1.0 (b) effect of x on non-dimensional temperature h
variation with distance x/X for nE = 1.8, nW = 1.2.
index n. An opposite trend is observed towards the cold
(east) boundary. The effect on N is found more towards
the cold boundary (Fig. 6b).

In Fig. 7a, effect of the variable refractive index on h has
been given for N = 0.2, b = 10.0, x = 0.0 and c = 0.5. In
Fig. 7b, for nE = 1.8, nW = 1.2, effect of x on h has been
given for N = 0.2, b = 10.0 and c = 0.5. It is seen from
Fig. 7a that for nE = 1.8, nW = 1.2, temperature drop near
the hot boundary is more than that for nE = 1.5, nW = 1.0.
Near the cold boundary, in both the cases, temperature
drops at the same rate. For the effect of x, in case of
nE = 1.8, nW = 1.2, it is seen that when scattering is more,
the temperature changes near the hot and the cold bound-
aries are less.
4. Conclusions

The LBM and the DTM were used to analyze combined
conduction–radiation heat transfer in a planar absorbing,
emitting and scattering medium with variable thermal con-
ductivity and constant and/or variable refractive index.
The radiative information was computed using the DTM,
and the energy equation was solved using the LBM. The
results of the LBM-DTM formulation were compared for
the constant thermal conductivity case and constant non-
unity as well as variable refractive index with those avail-
able in the literature. A very good agreement was found.
Effects of variable thermal conductivity and variable
refractive index on temperature distributions were studied.
These were found to have significant bearings on the
results.
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